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NOTICE

m

This report was prepared as an account of Government-sponsored

' wark, Neither the United States, nor the National Aeronautics and .

Space Administration (NASA), nor any person acting on behalf of
NASA;

' a, Makes any warranty or representation expressed
or implied with respect to the accuracy, com-
‘,,;j,ﬂi',, i pleteness, or usefulpness of the information con- TR
' tained in this report, or that the use of any infor-
mation, apparatus, method, or process disclosed
in this report may not infringe privately-owned
rights; or

b, Assumes any liabilities with respect to the use
of, or for damages resulting from the use of any
information, apparatus, method, or process dis-
closed in this report,

As used ahove, ''person acting on behalf of NASA'" includes any
employee or contractor of NASA, or employee of such contractor,
to the extent that such employees or contractor of NASA, or em-
ployee of such contractor prepares, disseminates, or provides
access to, any information pursuant to his employment or con-
tract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to:
o National Aeronautics and Space Administration
Office of Scientific and Technical Information

Washington, D. C,

Attention; AFSS-A
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ERRATA
Page 33

Delete entries for
"Propylene Carbonate + Tetramethyl Ammonium Chloride + SO;(g)."
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INTRODUCTION

The performance of a battery, while requiring electrodes, is
dependent primarily upon the liquid which forms the electrolyte. This
electrolyte determines which electrodes may be used. For example, an
excellent negative electrode would be lithium, but a less reactive solvent
than water is required. In order to achieve the heretofore unapproached
goal of a 200 watt hours per pound battery, solvent orientation was de-
cided upon; and a theoretical electrolyte equation was developed. This
equation is a useful tool for selecting electrolytes for high energy density

battery testing.

The theoretical studies concerning the role of the solvent in a
battery have been completed, and the results are presented herewith in
engineering form. Following this, the theoretical study of electrodes

was started.

The concept of using atmospheres, other than air, to provide

improved electrolyte conductivity has been verified by experiments.

Automatic recording of data for many electrolyte-atmosphere
systems is in progress. These data are being evaluated by means of
the theoretical equation concerning the solvent. The great quantities of
information issuing from the recorder indicates that this method of
collecting data will make the study of many new battery electrolytes

practical.

o ey
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QUANTITATIVE DESCRIPTION OF PROGRESS

The goal of this research program is to develop a battery of 200
watt hours per pound of total battery weight. It was decided to segregate
the overall task into logically discrete segments so as to permit a methodical

attack. R

The first segment selected was the role of the solvent. As formidable
as this role may be, the numerous inter-relationships have been resolved; and
a figure of merit based upon watt hours per pound has been evolved which

should be sufficiently accurate for screening useful solvents for further study.

(Part I Page 4)

Methods for mass production of pertinent electrochemical data for these
evaluations have been designed, constructed, and placed into operation. Initial
output from the strip chart recorder monitoring this work indicates that force-
ful methods will be required to properly evaluate this flood of information in
terms of the solvent figure of merit. Initial data has been manually treated
though the coverage was necessarily sparse due to the calculation load.

(Part II Page 17)

Considering the engineering compromises involved in a practical
battery, it is seen that, in searching the known solvents again, a favorable area
may be brought to light. Of perhaps greater importance, was the realization
that most previous batteries have operated in a normal air atmosphere or
under sealed conditions. The studies provided for in this assignment brought
to light the interesting concept that other atmospheres are equally possible.
Thus, the powerful scanning system given above will have the task of evaluating
a vastly larger area composed of solvent-atmosphere combinations. Most of

these possible battery combinations are totally new. (PartIl Page 17)



Followinhg characterization of the role of the solvent-atmosphere
systems, a theoretical approach to electrode potentials was selected as the
next segment of the overall task. While thermodynamic values may be avail-
able for aqueous reactions and free energies of dry crystaliine products, the
contribution of the solvent in determining realistic voltages and energy
densities is frequently overlooked. Initial approaches to account for the
effect of the solvent and atmosphere upon voltage and energy are presented

herein.

Reaction kinetics, particularly for irreversible systems as permitted
in primary batteries, comprise a third and more cumbersome theoretical
segment of the overall mission. However, just as the theoretical considera-
tion of electrode thermodynamics may be restricted to only those solvent-
atmosphere systems having favorable figures of merit, the more detailed
electrode kinetics need only be applied to systems satisfying the theoretical
requirements of both the solvent-atmosphere and electrode thermodynamics.

(Part III Page 56)

Some battery construction and testing of an investigative nature has

already been started, and data is included in this report.

Considerable work has been done concerning compatibility of
separators and materials of construction with soivents, solvent-atmosphere,
and solvent-solute-atmosphere combinations. The additional data, since the
first quarterly report, is presented herein. It is interesting to note that
while many materials are compatible with many pure solvents, the addition
of the atmosphere, and particularly the solute makes many materials unsatis-

factory.

The literature search continues,and the results of the second quarter's
readings are included in this report as References I, II, and ILil, pages 76, 81,

and 82.



-4-

PART I

I. THE SOLVENT ORIENTED BATTERY ENERGY EQUATION

In scanning the potentially vast number of possible battery combina-
tions for systems capable of higher energy density, it seemed desirable to
separate the general problem into logically discrete segments so as to

permit a methodical attack.

The first segment selected in this work was the role of the solvent.

The operation of a battery might be characterized by the forceful and electronic
transfer of electrons from a metal anode through an external load to a non-
metal cathode. For this to occur it is required that there be a consistent
internal flow of charge through the battery by other than electronic conduc-
tion. The solvent, therefore, must be capable of conducting charged ions. ;
This may be characterized by' the specific resistance of solutions prepared
with this solvent. While the role of the solute in conductivity is vital, there
is the general limitation that the solute must consist of the cell reaction. ;
product or other ions with fairly large electrode potentials. Conversely, those
ionic solutes most resistant to displacement are not generally the most soluble.
Therefore, despite the added quantity of measurements required, a number of
suitable salts of medium to high resistance to decomposition must be studied
in each solvent for a proper evaluation. The following have been chosen:

Aluminum chloride Tetramethyl ammonium chloride
Magnesium sulfate Sodium iodide
Potassium bromide Aluminum fluoride

Lithium chloride Potassium iodide

Lithium fluoride

Ionic conductivi:cy is not the only important facet of the role of the

solvent in a battery. Just as the solute ions must not be displaced from

solution by the anode or cathode, neither may the solvent be decomposed

nor displaced to any significant degree. Unfortunately, a-high dielectric
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constant (due to a high dipole moment) generally leads to a low decomposition
potential. This, therefore, leaves few generally useful solvents for battery
use. Solvent mixtures fare worse in that they usually offer the worst features

of each solvent from a decomposition standpoint.

Solvent decomposition may be characterized by the Tafel equation
when a reasonable number of solutes are tested. While polarization or over-
voltage depends upon the nature of the electrode surface, the evolution of
H; on bright noble metal electrodes is generally higher than for other
electrodes and depends primarily upon the solvent. A derivation of the

modified Tafel equation is given in Appendix II, Page 89.

Consequently, it is concluded that the value of a solvent in a
battery will depend to a significant degree upon the specific resistance and
Tafel parameters defined to include not only the constant in the overvoltage
function, but the practical equivalent of the theoretical decomposition

potential and auto-ionization constant contribution.

A similarity in concept to the energy storage capability of an
electrolytic capacitor is noted here. This capability depends upon the
capacity to the first power and voltage to the second power, which may
be stated as: W = + CV2. The energy storage capability of an ordinary
battery is not simply defined, but the effect of the solvent upon the energy
maximum has been approximated herein and the relative importance of the
specific resistance and decomposition potential constants characterized. ‘
The most striking result of this derivation was that the specific resistance
was significant only to the extent of the function (D Ln R), where D is the
Tafel slope and R is the specific resistance. By contrast the Tafel constant

C emerges in significance directly to the first power.

Since compromises from the true engineering viewpoint must be
met in a practical battery system, a reappraisal of the field of known

solvents may lead to the desired objective. Indeed, it was interesting to

NG T
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note from the equation that water should be capable of sustaining a 3.2
volt battery. The automotive storage battery tops the conventional

voltage list with 2. 15 volts, and more recently introduced cells have

lower and lower voltage. For example, the zinc/silver peroxide cell
gives 1.5 volts. The problem is similar in character to the rocket

engine where, it might be said, extremely high energy fuels are available;
but their reaction temperatures may exceed the limits of available engine
construction methods and materials. The solvent in a battery is analogous
to the engine. Itis the means by which the energy of the fuel (anode) and
oxidizer (cathode) is utilized to produce useful work.

Since R emerges in the equation as of lesser importance than voltage,
it follows that the solvent dielectric constant need not be the major design
factor.

Most aqueous batteries have operated in air or under sealed
conditions. One aspect of the current study has brought to light the inter-
esting concept that other atmospheres are equally possible. This realization
extends the scope of the solvent study since it differs drastically from the
usual solvent pair concept in that the secondary solvent need not be present
as a liquid capable of decomposition by the active electrodes. Thus, a
normally gaseous, highly polar material at less than its vapor pressure,

in contact with salt can promote solution and conductivity in a solvent even

though such complexes are not stable under "normal' atmospheric conditions.

While silver chloride cannot be considered excellent from a potential stand-
point, the effect of an ammonia atmosphere upon approximate specific resis-
tance in pyridine is shown by the following:

Specific Resistance of

NH3 Saturated Solutions
0 pounds per square inch 108 ohm cm.
60 pounds per square inch 10% ohm cm.
90 pounds per square inch 10! ohm cm.
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This line of reasoning is not intended to minimize the importance
of the total aspect of battery technology but rather to emphasize and separate
the various factors into logical groups of sufficiently few variables as to
allow theoretical analysis and evolution of specific useful experiments. A
specific treatment of the role of the solvent is described below.

In following periods the role of the electrodes will be examined with
particular reference to solvent solute atmosphere combinations which may .'“
have favorable specific ranges of specific resistance and Tafel constants.

These equations are interesting in that they suggest specific
experiments. For example, a 3.2 v. aqueous cell (W = 400 watt hours
per pound) is clearly called for. Such battery has apparently not been
reported in the literature. Inspection of the derivation of the equation
to see what factors were responsible for the significant increase over
the energies currently available from aqueous batteries revealed that
the contribution of the auto-ionization constant has not been fully exploited.
An alkaline anolyte, coupled with an acid catholyte (by means of recently
available ion exchange membranes), could provide for the use of more active
electrodes in aqueous cells: Using the alkaline magnesium electrolyte of
Losierl, a negative ion exchange membrane to retain the hydroxyl ion,

a reaction product dump or salt bridge, a positive ion exchange membrane
to isolate the catholyte, and a hypochlorous acid cathode (Platel, Table I, pages
8 and 9 ) did indeed provide a stable 2.5 volt (0.3 V above the minimum

value of 2.2 as required for 200 watt hours per pound).

Continuing the analysis presented in the previous quarterly re-
port, calculus has been used to arrive at a practical result. Setting the
derivative of energy with respect to discharge time equal to zero appears
to be correct and gives a value for time in terms of voltage. Substitution
of this function for time in the equation leads to the condition where energy
is a function of the single, variable, cell voltage. In the subsequent derivation
this led to equality of the corrosion and electrolyte resistance loss terms.

In response to questionszconcerning the definition of the term ''time"
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TABLE T

RESULTS OF AQUEOUS TEST CELL

Mg(C10y), HC1
+ + + :C
Mg (OH), + HOC1
f—

(Open Circuit)

Elapsed Time (hr.) Potential (load) Potential
St :
aTt: 5100 2.0V 2.8V
0:15 2.0 2.7
0:30 2.0 2.5
0:L5 2.2 2.5
6:15 2.3 2.5
12:00 1.6 2,43
20:30 1.6 2.5
Cathode Agitated
20:30 2.5 2.65
End: 23:00 2.4 2.5
Same Cell Load 500 — ¢ '
Start: 0:15 2.1 2.5 .
3:00 2.1 2, C-
3:30 2.2 2.4
End: 20:00 1.8 2.5
, . !
“li'tc?k ‘
{ , b
V ‘1, l ‘!‘t
|
« v wv ww e v ve v VOVPY

i I
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in the equation, it was decided to shift the operating point of the equation so
that the corrosion loss would be 10 times the resistance loss, thus providing
for, at least, an arbitrary allocation to activated stand or shelf life. Another
modification of the basis for the derivation given below was the increase of
corrosion area to an arbitrary 10 times the value measured on bright platinum
electrodes. This change was made to make at least some allowance for the
use of electrodes of a porous nature. The arbitrary aspect of the above

two restrictions is not as great as might be expected in the final analysis
since it is the log of the factor 10 which becomes directly involved with the

electrolyte specific resistance and Tafel constants.

1y, S. Patent 2, 993, 946

2 Technical meet ing at Lewis Research Center, September 18, 1963.
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DERIVATION

In view of the above discussions, the equation is derived in
terms of the electrolyte parameters on a basis of one pound of
electrode reactants and the definition:

External i _ t External
cell energy cell voltage

. { External

cell current} (discharge time)

DEFINITION OF TERMS

A = Geometric electrode area

y
I

Faraday's constant in English units (amp hours) per
(pound equivalent weight)

=  Theoretical current (Stoichiometric)

= Corrosion current density

Inter-electrode spacing

g roa
1l

= Equivalent weight of combined electrode reactants (lbs.
per lb. -equivalent)

12,180
_——ra

= Theoretical capacity of reactants = M

= Electrolyte specific resistance
= Discharge time with arbitrary allowance for stand
The maximum practical value of Y with variation in X

= An approximation of W for screening purposes

X gl € 4 ® D
1

=  Couple voltage (internal)

Y = Cell energy, watt hours per pound of electrode reactants
C & D are modified Tafel constants measured for each electrolyte
G approaches X by iteration

S & H are constants

mp. hours = F/M

L
Let: (External cell voltage) = (X - IRK)

The corrective term IRL/A could be more exactly stated as
(I-10AJ) RL/A. However, expansion of this term in the equation

indicates that 10AJ could be neglected.

(1)
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Let: (External cell current) =1 - (10AJ)
The theoretically available current is reduced by a corrosion
current of 10 times the apparent cell area times the corrosion current

density (See Appendix II and Page 89 ).

Therefore: Y = (X - IR%) I-10A)T (2)
... -_Q_ F F (HE -5)
From Appendix I: I = T MT-T¢
From Appendix II: J = e(X—C)/D
Hence:
Y = XIT - 10XJAT - I"‘R—i-:-T 4+ 10IRLJT (3)
Q¢ L
= XQ - 10XJAT - = Rt 10QRLJ (4)
= XQ - 10XAT e(X'C)/D - QZ%I-IH 10QRL e(X'c)/D (5)
_ XF (X-C)/D F’RL F (X-C)/D
= M 10XAT e —m‘i‘lOMRLe (6)
Y = xFeHX-S) lOXATe(X-C)/D _ gL e(ZHX'?‘S) + (7)

AT

HX-S + (X-C)/D

+ 10FRLe
(chemical) = XFe(HX-S) (8A)
(corrosion) = 10XATe(x'C)/D (8B)
oy _ oRL(2HX-2S)
(resistive) = F AT © (8C)
S + (X-
(loss recovery) = 10FRLe XS (X-C)/D (8D)

The (corrosion) and (resistive) loss terms are necessarily less
than the chemical term. The loss recovery term is less than the loss
terms. For this reason, it will be neglected in the screening process

as was the correction term 10AJ in the cell voltage correction term.
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Let: (corrosion loss) = 10 (resistive loss)

! (X-C)/D _ 10F?RL

10XATe (9)
ATe(ZS—ZHX)
' Hence: T =£— ',l BXE eHX_S - (X-C)/2D (10)

This expression increases T and as a result, we are now
operating below peak Y. This represents more practical operating
conditions (peak Y occurs when dY/d4T = 0).

Substituting this expression of T into equation (7) yields:

v = XFe(HX-S) _ LoxXF ’ _1_{5(1: JHX-5 + (X-C)/2D _ (11)
’ X HX-S - (X-C)/2D
- FR1L, ﬁ- e
v = XFe(Hx-S) (1 - 10 % e(X-C)/ZD '%% e(X-C)/ZD) (12)
’ Hence:
Y = XFe(HX'S) (1-11 RL e(X'C)/ZD) (13)

X

THE ELIMINATION OF X

An expression for X in terms of the experimental parameters
is now needed. Attempts to set dY/dX = 0 have not as yet led to an
explicit solution for X in terms of the constants R, C, and D,

However, letting:

U= XFe(HX'S)
and V=11 , RL e(X'C)/ZD
X
then Y=U(1-V)

The term U is continually increasing as X increases but V increases
slowly at first then rises violently through unity as V becomes signi-
ficant with respect to unity. Thus an approximate solution for

. { ! ' ; ‘
i ' I [
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maximum practical Y, W, is possible by setting V at some small fraction
of unity. The term (1-V) represents the electrical efficiency. A value
of 75% seems reasonable though choosing 90% would effect but little
change in the resulting value of X and W, the approximate figure of
merit for the solvent.

Tentatively for screening purposes, the electrolyte electrical
efficiency will be set at 75% and the more exact equations (13 or 7)
will be used on those electrolytes which give figures of W approaching

200 watt hours per pound.

Hence:
RL  (X-C)/2D = 1/4
11 —_— e
X
- o)
(121) (16)—RXL JX-C)/D L,

X = (121) (16) RLe(X"C)/D

Taking the natural logarithm

. X-
Ln X =Lin 1936 + Ln RL + —]5(-;
X=G=C-7.57TD-DLnRL+DInG

This expression can be solved by iteration:

W = 3/4 gF ¢HGS)

At this point, it is convenient to find a minimum G such that

W = 200 watt hours per pound.

Setting: 200 = 3/4 GFe(HG-S) Let B=3/4F =9,135
200 . (HG-S)
B - Ge

In equation (21), it is desirable to remove the exponential term by ex-

pressing it in another form. This can be accomplished by means of a

Taylor Series. As a result, G was found to be 2.2 volts minimum.
Hence, a necessary condition in order to obtain 200 watt hours

per pound is that X = 2,2 volts or greater.

ficant withs v ospent to ity Phvas s approsnate sotution for

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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THE C MINIMUM EQUATION

The process for evaluating W is too lengthy for manual use.
It would be more convenient to restrict the experimental parameters
. . . o = >
such that inspection of experimental data would indicate when W = 200

watt hours per pound. Since X minimum = 2.2 volts: From Equation (18):

2.2=C-7.57D-DLnRL+DLn 2.2 (22)
C minimum = 2.2 + D (6.77 + Ln RL) (23)
or C minimum = 2.2 + D (5.06 + 2. 30 LOglOR) (24)

where L, the inter-electrode spacing, is set at 1/5 cm. as a practical
minimum value.

C minimum is now a function of D and LoglOR. By choosing
appropriate values for D and plotting C minimum versus LOglOR we
obtain a family of lines (See Figure 1 , Page 16) which enables one
to compare C minimum with C experimental. A value of C experimental
equal to C minimum indicates 200 watt hours per pound.

The equations do not recognize that a physical limit of approxi-
mately 6 volts exists for normally available electrodes. Thus, an upper
limit is also set on the values of C considered. For those electrolytes
which qualify by this test, a figure of W will be determined numerically

from equation (13) or (7).
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PART 1I

ANALYSIS OF SPECIFIC RESISTANCE AND TAFEL CONSTANT DATA

Provided that the coordination requirements of the conducting

solute are met, the dielectric constant of the primary solvent may not

need to be high. This permits the consideration of such battery electrolytes

as commonhydrocarbons containing an alkali halide coordinated with an
atmosphere of a highly polarized compound. If the secondary solvation
sheath of the ions still requires the action of a high dipole material, a
small quantity of such normally solid substances as acetamide may be dis-
solved into the primary solvent whereupon its migration to the surfaces of
the charged species provides an activity far out of proportion to the actual

concentration of the secondary ligand.!

It is, therefore, planned to measure conductivity in many primary
solvents irrespective of the dielectric constant value but in the presence of
unusual atmospheres such as NHi, SO;, and other polar materials sub-
stantially below their vapor pressures. When favorable conductivities
have been obtained, the effects of solid polar additives may be expected

to provide further conductivity increases.

In the following, Part A is a description of the method used to
collect the specific resistance and Tafel constant data; and Part B is

the method used to evaluate the data.

The information collected to date appears to confirm the hypothesis

as stated in the first paragraph.

(A) Specific Resistance and Decomposition Potential Measurements

Specific resistance and decomposition potential data required for

establishing the figure of merit, W, of solvent-solute~atmosphere systems

lAbstract Control #4004, Livingston First Quarterly Report



-18-

as battery electrolytes are being generated on a continuous basis. The
solvent and solute to be evaluated are introduced into the conductivity cells
show in Figure II on page 19. At the beginning of each run, internal resis-
tance for each of the conductivity cells is recorded at 1000 cps. Next, d.c.
potentials of 1 through 10 volts are applied through the series limiting resis-

tors and the platinum electrodes in 1 volt and 10, 000 ohm steps as shown in

Figure III on page 20. The maximum current is limited to 100 microamperes.

After a set of reference points at atomspheric conditions is obtained,
the test chamber is purged free of air; and the ligand gas is allowed to flow
gradually into the test chamber through a stainless steel capillary. The

cell currents and ligand gas pressure are continuously recorded on a strip

chart as show in Figure IV, page 21 by an automatic recorder (see schematic

in Figure III, page 20%). The run is allowed to continue until the test chamber

pressure equals the pressure of the ligand gas in the supply tank, and until
steady-state conditions in the conductivity cells are indicated.

At the end of each voltage-current cycle, the cells are reset to
initial conditions by short-circuiting the platinum electrodes for a period
of three minutes. This cycle is repeated continuously until the reaction of
the ligand is completed.

From the internal cell resistance and current data, the interfacial
cell voltage X can be calculated according to the relationship:
X=V -I(R+ Rm) where V is the applied voltage, I is the cell current, and
R and Ry, are the internal cell and series limiting resistances respectivel.y,

At present, Tafel data are generated and recorded by the automatic
equipment at a rate of about 5 current-voltage curves per hour per cell.
This rate will be tripled by putting into operation equipment designed to vary
environmental conditions and gather test data on nine conductivity cells
simultaneously. Since this means that Tafel data will be generated at a rate
in the order of 5,000 points per day, approaches for automatic data compu-

tation are being given urgent consideration.

*Complete recorder schematic Figure V, page 22.

+) oo . \i .
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(B) Evaluation of Solvent-Solute-Atmosphere Systems from

Conductivity and Decomposition Potential Measurements !

The figure of merit for a solvent-solute-atmosphere system as
a battery electrolyte may be estimated from measured specific resistance,
R, and modified Tafel constants C, and D in the equation:

X =C+ D InJ

where X is the sum of the two interfacial voltages E| and E2 of Figure III
on page 20 , and J is the electrode current density I/A where I is the cell
current and A is the geometric electrode area. Since D represents the
slope of the Tafel line, a plot of X vs. log J is presently being made for
each system under study; such a plot for the system is shown in Figure VI
on page 24

By utilizing the solvent oriented battery energy equation for the
condition of 200 wh/lb. and an (arbitrary) inter-electrode spacing of
2 mm., the family of lines shown in Figure I on page 16 is obtained.
For the system referredto in Figure VIwhere R was measured to be
2. 1K and D was found to be .43, a minimum value of 7.3 is indicated
for C in order for the system to be capable of the required performance. v

The results obtained from the specific resistance and decom-
position potential measurements demonstrate the ability of a coordi-
nating atmosphere to significantly reduce the resistivity of several
solvent-solute systems. For example, a sulphur dioxide atmosphere
reduced the resistivity of lithium fluoride-isopropylamine solutions

by a factor of 25.

~
>
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TABLE II

SPECIFIC RESISTANCE AND TAFEL DATA

P = Ligand partial pressure in pounds per square inch absolute

R = Electrolyte specific resistance kilohms
C = Electrolyte modified Tafel intercept (volts)
D = Electrolyte modified Tafel slope (volts)

n-Propylamine + NHs(g)

P R
0 S
45 200
75 200
105 200
125 40
n-Propylamine + Lithium Chloride + NHs(g)
0 7.0
45 3.0
75 3.0
105 3.0
135 1.0
n-Propylamine + Potassium Bromide + NHj(g)
0 200
45 200
75 200
105 200
130 200
n-Propylamine + Tetramethyl Ammonium Chloride + NHj(g)
0 200
45 200
75 200
105 200
130 200

*Tafel curve requires theoretical consideration; may be favorable.
*#*Tafel curve requires theoretical consideration; indications unfavorable.

fe!
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TABLE II (continued)

Butyrolactone + NHj (g) : P R
0 4.0
45 7.0
Butyrolactone + Lithium Chloride + NHs(g)
0 4.0
45 2.0
75 2.0
105 2.0
Butyrolactone + Aluminum Chloride + NH3 (g)
) 0 1.0
45 0.3
75 0.3
105 0.3
Butyrolactone + Magnesium Sulfate + NH3(g)
0 4.0
45 2.0
75 2.0
105 2.0
Butyrolactone + Potassium Bromide + NH3(g)
0 40
45 40
75 40
105 10
125 7.0

Butyrolactone + Tetramethyl Ammonium Chloride + NHs(g)

0
~45
-5

105

125

200
90
90
20
20




-27- TABLE II (continued)
Pyridine + NHj(g) P R
0 200 .
45 90 L
75 90 .
165 40 .
130 4.0 .
Pyridine + Lithium Chloride + NHs(g)
0 7.0
45 7.0 .1
75 7.0
105 7.0 .8
‘135 4.0
Pyridine + Tetramethyl Ammonium Chioride + NHs(g)
0 200 L
45 200 L
75 90 s
105 20 L
130 3.0 -
Pyridine + Potassium Bromide + NHi(g)
0 90 L
45 200 _
75 200 .
165 100 _
135 40 L
N-Methyl-2-Pyrrolidone + NHs(g)
0 40 .
45 40 .
75 20 L
105 10 -
120 7.0 L
|
)
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-28- TABLE II (continued)
N-Methyl-2-Pyrrolidone + Lithium Chloride + NH;s(g)

P R C
] 0 1000 4.7
45 1000
75 1000
105 1000

N-Methyl-2-Pyrrolidone + Aluminum Chloride + NH;(g)

0 10 1.5
45 40 L
75 20 L
105 10 2.1
135 4.0 3.9

N-Methyl-2-Pyrrolidone + Magnesium Sulfate + NH;(g)

0 500
45 500
75 40 L
105 40 .
135 20

N-Methyl-2-Pyrrolidone + Potassium Bromide + NH;(g)
0 10 4.0

N-Methyl-2-Pyrrolidone + Tetramethyl Ammonium Chloride + NHj(g)

0 a0
Propylene Carbonate + NH;(g)
0 7.0
45 7.0
75 10 L
105 7.0

Propylene Carbonate + Lithium Chloride + NH;(g)

0 20
45 20
75 20

105 20

]
3

s, v s A
3 3 w3 3
2.
+*



-29- TABLE II (continued)
Propylene Carbonate + Aluminum Chloride + NH;(g)

P R

0 0.7

45 0.7

75 0.7

105 0.7
Propylene Carbonate + Magnesium Sulfate + NH;(g)

0 100

. 45 30
75 20
105 30
A Toluene + NH;(g)

0 2000

45 2000

75 2000

’ 105 2000

Toluene + Lithium Chloride + NH;(g)

0 1000

45 1000

75 1000

105 2000
Toluene + Aluminum Chloride + NH;(g)

0 1000

45 1000

75 1000

105 2000
Toluene + Potassium Bromide + NH;(g)

0 1000

45 2000

75 2000

105 2000

—
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Toluene + Tetramethyl Ammonium Chloride + NH;(g)

P

0

) 45
75
105

L]

P .
Taey .

v

A Petroleum Ether + NHj(g)

45

105
Petroleum Ether + Lithium Chloride + NHs(g)

45

75
105
Methanol + NHj3(g)

Methanol + Lithium Chloride + NHj(g)

- Methanol + Potassium Bromide + NHs(g)

Cyclohexanone + Lithium Chloride + NHs(g)

45
75
Hexylene Glycol + NHs(g)

Hexylene Glycol + Lithium Chloride + NHjs(g)

{
£
{
{

-30~- TABLE II (continued)

2000
2000
2000
2000

2000

2000

2000
2000

1000

30

L TTN T ST
)

itk W . .




-31- TABLE 11 (continued)

Petroleum Ether + Potassium lodide + SO;(g)

39

.0
41. 2
46.0
47.5

.0

48

R

50
48

48

Petroleum Ether + Tetramethyl Ammonium Chloride + SO;(g)

0
39.0
41. 2
46.0
47.5
48.0
Acetone + Lithium Chloride + SO,(g)

45
46
46
46

3.

1



-32- TABLE II (continued)

Cyclohexanone + Aluminum Chloride + NHs(g)

o Iy

=
o

105
Isopropylamine + Aluminum Chloride + SO; 'g)
0
16.0
20.0-19.0
20.5 22.4
26.5-28.5
31.0-32.0
33.0
35.0-36.4
39.0-39.4
42.0-42.9
49.0
45.0
43.0

Isopropylamine: + Lithium Fluoride + SO,(g)

0
16.0
20.0-19. 0
20.5-22. 4
26.5-28.5
3).0-32.0
33. 0
35.0-36. 4
39.0-39. 4
42.0-42.9
49.0
45.0
43.0

R

200
200
200
200

45

125
150
125

Te)

1.4

4.7
6.9
6.7
16
37
74
130
88
130
97
119
66
27

22
13
48

137
71
198
76
105

°lo

e

]

0.4
0.6
0.6
1.9
4.3
8.8
12
9.1
12
10
12
7.0
2.7

2.4
1.4
4.5
ok

e

ook

Aok
3Ok
15
6.8
21
7.5
10



-33- TABLE II (continued)
Isopropylamine + Lithium Chloride + SO;(g)

P R C
0 1.-8 4.7
16.0 1.8 7.3
20.0-19.0 2.0 5.1
20.5-22.4 2.1 5.3
26.5-28.5 2.8 6.8
31.0-32.0 2.8 5.8
33.0 2.8 9.6
35.0-36.4 2.8 13
39.0-39.4 2.4 138
42.0-42.9 2.8 - 90
49.0 2.8 145
45.0 3.0 101
43.0 3.3 55
Propylene Carbonate + SOg(g)_
0 8.5 6.1
. 140 .
_— 50 S
— 49 —
Propylene Carbonate + Potassium Iodide + SO,(g)
0 1.5 66
. 48 31
L 55 20
_ 50 28
Propylene Carbonate + Tetramethyl Ammonium Chloride + SO;(g)
0 1.8 7.6
R 50 —
50

49

= ~ o o © o o o |Y
Ll = I T N S RN

— —
ot 0 B *® K
N o




Propylene Carbonate + Lithium Fluoride + SO;(g)
P
0 .

Propylene Carbonate + Lithium Chloride + SO;(g)
0

20.
21.
. 22.
22.
25.
25.
27.
51.
51.
51.
52.
52.

20.
21.
22.
22.
25.
25.
27.
51.
51.
51.
52.
52.

o W W O o vtV o Uo»n

o W W O o v N o U\

w = o o o wlw

o O o u N W

-34- TABLE II (continued)

[y

(=
.
[

17
15
15
15
12
11
11
11
11
11
11
11
11

B O O© O

IO

1
33
30
8.9
14
11
18
15
16
16
15
32
25

7.3
17
16
17
14

18

18
26
16
18
31
30
15

o

o w N =

i = N s
O n N ® ® N o5 o o ® 0 O
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H -35- TABLE II (continued) o
; Propylene Carbonate + Aluminum Chloride + SO;,(g) £ )
; P R C D S
§ 0 2.9 14 2.5 o N B
; 20.5 2.9 55 5.3 FETNY
5 21.5 2.9 96 13.1 |
i 22.0 3.0 50 6.4 EIRSEE
| 22.5 3.4 14 1.5
25.2 3.4 9.3 0.9
25.2 3.6 11 0.9 EELI
27.0 3.8 12 1.1 o
51. 0 3.9 7.3 0.6 e
51.3 4.1 13 1.4 S
51.3 4.1 12 1.2 o
52.0 4.5 13 1.5 ST ?
. 52.5 4.8 13 1.3
Propylene Carbonate + Potassium Bromide + SO;(g) G
0 75 32 3.7 A
37.5-39.0 4.8 3.8 0.3 8 ;
42.5-43.0 6.8 e I
43.0 7.2 2.7 0.2 C
43.0 7.8 2.7 0.2 o
; ‘ 46.0-48.0 7.9 6.2 0.7 I {
49.0-50.0 8.6 3.0 0.2 R
51.0 100 o o ;
Propylene Carbonate + Sodium Iodide + SO,(g) 4
0 0.3 L
37.5-39.0 1.5 4.5 0.0 S
42.5-43.0 3.1 18 1.3 : 3
43,0 1.3 22 2.3 |
: 43.0 1.3 19 2.1 s |
46.0-48.0 1.1 14 1.4 T
49.0-50.0 1.2 10 0.9 L i
51. 0 43 L s i
|
|
|
, ‘ !
‘ \ |
¥ .
I | ' ‘ .
¥ . ' .




-36- TABLE II {continued)

Propylene Carbonate + Tetramethyl Ammonium Chloride + SO,(g}

P
0
37.5-39,
42.5-43,
43.0
43.0
46. 0-48.
49.0-50.0
51.-0
Petroleum Ether + SOz(gj
0
21, 5-48-
Petroleum Ether + Lithium Chloride + SO,(g}
0
23 0-51.
Petroleum Ether + Lithium Fluoride + SO;tg)
0
23.0-51.
Petroleum Ether + Potassium Bromide + SO;(g}
0
23.0-51.
Petroleum Ether + Aluminum Chloride + SO;ig)
0
39.0
41.2
46.0
47.5
48.0
. ¥t HERGY Eo0a¥vom '
-

y

54
4.0
1.7

2.2
2.1
2.3

0.3
0.1

-~ -.

. a A -~ ‘~
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SPECIFIC RESISTANCE AND TAFEL DATA GRAPHS
BASED ON TABLE II

NOTE
The R, C, and D values are plotted against ligand partial pressure

on the following graphs.

The conductivity cell has an air atmosphere at ''0'" ligand partial

The thin solid line indicates that ''0" pounds per square inch

pressure.
Dotted lines designate regions where

absolute is only a point of reference.

C and D could not be determined.
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n-PROPYLAMINE + LITHIUM CHLORIDE

o1 xa

12

O

- . - . — A - —a—.

W - M e

127

79 111

47 63
Pressure NH, lbs./sq.in. abs.

31
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BUTYROLACTONE

Dx 107}

A

n 4

R x 10

0 20 25 30 35 40
Pressure: NHj; lb./in. sq. abs.

45




r

R x 10°

7.5

5.0

[RSEEIPR

-40~

BUTYROLACTONE + LITHIUM CHLORIDE

—— S epes mem— —

1
?\\\\%
e
NI
45 75 105
Pressure NH, 1b. /in. sq. abs



Dx 10

R x 102

15

10

BUTYROLACTONE + ALUMINUM CHLORIDE

-41 -

Pressure NH, lbs. /in. s8q. abs.

D— —
T T =
- o QG
45 75 105



Dx 10

Rx 10’

BUTYROLACTONE + MAGNESIUM SULFATE

-d2 -

S
S
= —
~
Ca =
45 75 105

Pressure NH; 1b. /in, sq. abs.
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Px10”}

R x10
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PYRIDINE + LITHIUM CHLORIDE .

-

4
3
2
!
1 |
o 4 .,,.__,,_m-. i P S— ...,._...,.i

4 e e e e g e o ]

31 47 63 79 95 m 127 ;
Pressure NH, 1b. /sq in. abs. !

45" R L 105

o ¥Wressuse Hyth. fin. sq  ave. ‘ '

0.-.1
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N-METHYL-2-PYRROLIDONE + ALUMINUM CHLORIDE

Dx 10

60

40

R x 103

20

\

L [ S
0
31 47 63 79 95 111 127
Pressure NH; lbs. /in. sq. abs.

0

45 75 105
Pressure NH, lbs. /in. sq. abs,
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PROPYLENE CARBONATE + ALUMINUM CHLORIDE

D x107}

—

R x 10
S

45 75
Pressure NH; 1b. /in. sq. abs.

*

105




)

Dx10

R x 10°
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CYCLOHEXANONE + LITHIUM CHLORIDE

ﬁ’.:r
4_1\.);
O\
- S—
25 35 45 55 65 75
Pressure NH; lbs. /in. sq. abs.
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ISOPROPYLAMINE + ALUMINUM CHLORIDE

12

12¢

80

40

RxlO4

2 35

5

Pressure NHj lbs. /in. 8q. abs.

55
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ISOPROPYLAMINE + LITHIUM FLUORIDE

 .48-

120

80

40

14

25

35

Pressure SO, lbs. /in. sq. abs.

45

55



R x 103

18

160

120

80

40

30

20

10

ISOPROPYLAMINE + LITHIUM CHLORIDE

-49-

1

25

35 45
Pressure SO, lbs. /in. 8q. abs.

55



R x 10°
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PROPYLENE CARBONATE + LITHIUM FLUORIDE

20 25 30 35 40 45 50
Pressure SO, lbs./in. sq.



RxlO3
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PROPYLENE CARBONATE + LITHIUM CHLORIDE

adm A o

20 25 30 35 40
Pressure SO; lb. /in. sq. abs.

45 50




PROPYLENE CARBONATE + ALUMINUM CHLORIDE

|
\

20 25 30 35 40 45

Pressure SO; 1b. /in. sq.

50

, ‘#



PROPYLENE CARBONATE + POTASSIUM BROMIDE:

ko

20

R x 103
N
o

25

10 20 30 Lo 50

Pressure S0, psia
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PROPYLENE CARBONATE + SODIUM IODIDE

20

10

bo

20

R x 103

0 10 20 30 Lo

Pressure SO2 psia

L T

50




50

bo
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PROPYLENE CARBONATE + TETRAMETHYL AMMONIUM CHLORIDE

_-

0 1o 20 30

Pressure SO0, psia

uo' |
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PART IIL

THEORETICAL APPROACH TO ANODES

Appendix III provides a thermodynamic method of estimating electrode
potentials in nonaqueous solvents based upon data obfained in aqueous solutions.
The results obtained using this approach were well within 0.1 V of the observed

values for seventeen cells in liquid ammonia.,

In applying the concept of the ligand atmosphere to the battery, the
coordination possibilities become potentially more complex. A competition
may exist, not only between the solvent and solute for the coordinate position,
but also between the aimospheric constituent and the solvent and solute. The
effect of the resulting coordination upon cellvoltage and reaction weight may
become quite important. Competitive and augumentative reactions will be
possible from the following list:

Anode Types by Coordination Pattern

1. Anode reaction product is uncoordinated by solvent, solute, or atmosphere
and is probably insoluble. |
Example: The anode of an aqueous lead=-acid battery.
Advantage of minimum reaction equivalents though
example is electrolyte limited.
2. Anode reaction product is coordinated by atmosphere. Anode potential will
increase, but reaction weight must include consumed atmosphere.
Example: None available. A similarity to the
Lieclanche anode might be drawn.
Zn + 4 NHs w=® Zn{NH;7, ¥
3. Anode reaction product is coordinated by solvent. Anode potential will in-
crease, but reaction weight will probably exceed that of two above.

Example: Most aqueous anodes.

4, Anode reaction product is coordinated by solute. Voltage and weight increase.

Example: Halide ion complex.
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In view of Appendix Bl the contribution of the anode voltage by
coordination might well be approximated by the techniques outlined. The
literature of coordination compounds (via Chemical Abstracts) may yield
data suitable for transformation from one solvent to another by means of
the techniques of Bjerruml, J'ollyz, and Meyers3. That is, the aqueous
chemical data on ligands, solutes, and solvents, will be used to derive free

energy corrections for anode potentials in other solvents.

1 Journal of Chemical Reviews, 46, 381, 1950. i
2 University of California Radiation Laboratory Report, UCRL-2201, May, 1963,
3 Appendix III
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PART IV

BATTERY CONSTRUCTION AND TESTING

During the quarter a number of electromotive cell tests were run.
The solvent oriented approach and the aim towards such couples as lithium/
fluorine imply significant engineering difficulties to be overcome. The use
of a glass ion exchange membrane with these anodes has been mentioned.!
This membrane must be unusually thin so that the construction of closely
spaced cells was given considerable thought. The first test vehicle is
shown in Plate II, page 73. Three stable Pt/NHj3/soda lime glass anodes
were fabricated despite the obvious difficulties of construction, They con-
sisted of a platinum wire sealed into a soft glass tube partially filled with
liquid ammonia and extending into a short sealed capillary. Attempts were
made to electrodeposit alkali metals through the capillary walls into the
ammonia. This secondary battery method was unsuccessful. The primary
battery approach will next be tested using commercial glass electrodes im-
mersed in lithium bronze, Plate 1II, page 74. Two appropriate glass
electrodes (sodium and cationic) have been procured, and a pH meter has
been calibrated to read beyond its normal range. The theoretical couple
involved will be Li-NH3//AgCl-H,O. A comparison between the theoretical
and the observed potentials for this hybrid solvent cell will be most interest-
ing. Other glass compositions and fabricated items are being considered
for their exchange properties in this application. One preliminary experi-
ment with an organic membrane did not result in immediate destruction of
the cell, and a voltage was observed. Further work along this line is
indicated.

As stated previously, the solvent oriented battery equation indicated
that a cell using water as a solvent should be capable of producing its maximum
energy output when operated at a potential of 3.2 volts. In order to approach

this high potential, the anode must be in a basic anolyte and the cathode must

Livingston First Quarterly Report on Page 19.



-59-

be in an acid catholyte. Under these conditions, theoretically, the anode

could yield 1.3 volts; and the cathode could produce 1.7 volts for a system

voltage of 3.0. The construction of a cell with these characteristics requires

the use of two ion exchange membranes, a strong acid membrane, and a
strong base membrane. See Plate I, page 8.

Using these principles, an aqueous cell was constructed (see Table I)
and initially gave 2.9 volts open circuit potential. This cell utilized the
Mg-Mg(OH),/HOCI1 couple and ran for twenty hours. A second cell based
upon the Mg-Mg(OH) /KMnO,4 couple gave 2. 95 volts open circuit. Since
potentials of sufficiently high value and stability are available, this approach
warrants more detailed examination with respect to stoichiometry and
electrode kinetics. See Plate IV, page 75.

During the quarter, four stainless steel pressure chambers and
associated hardware were assembled to expand the testing program of low
boiling solvents and to conduct cell tests under pressure.

It was deemed desirable to conduct a multiplicity of tests in each
of these chambers and, thereby, risk some possibility of interaction
rather than set up a large number of these relatively costly units. In
cases of doubt concerning interaction of one test with another in the same
chamber or with combinations of particular importance, individual repeat
tests can be made.

By using existing Livingston cell holders modified as shown in
Figure II, page 19 it will be possible to run six conductivity tests in each
test chamber instead of one. In this new test vehicle, solder joints have
been eliminated and have been replaced with Teflon covered wire. These
changes have been made to eliminate corrosion and decomposition that were
problems in the previous test cells.

In addition to the stainless steel pressure chamber, special glass
apparatus was designed and acquired for the evaluation of ion exchange

membranes and separators in half-cell testing media.
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PART V

RESEARCH CELL AND SEPARATOR RESISTANCE MEASUREMENT
EQUIPMENT

The application of half-cell and reference electrode techniques in
varying solvents and under various atmospheric conditions is subject to
many practical and theoretical difficulties. One technique for overcoming
many of these problems has been described in the Proposal and an example’
cited of its application to the selective study of electrodes and separators
in ammonia.

The technique consists of constant average driven discharge of the
cells under a cyclic loading program allowing frequent measurements of
open and closed circuit voltages of the complete cell and its individual
components as resolved by two reference or auxilliary unloaded electrodes.
The two extra electrodes permit division of the complete cell into two half-
cells and provide an index of their mutual reliability by comparison of one
with the other. Frequent verification of references is necessary for
sealed cells and for cells of unusual solvents. In addition, the load
current may be chopped at a comparatively high frequency during the
load-on half of the duty cycle to provide equally comprehensive a. c.
measurements for cell component resistance evaluation. Since about 16
different measurements are required on a continuous basis, an automatic
strip chart recording system is required.

Previously it was planned to set up the 12-channel strip chart
recorder being used for the specific resistance and Tafel data scanning
with a program board system, permitting the same recorder to be
utilized for half-cell work during the daytime and the solvent scanning
at night and over weekends. Now that the automatic scanning is in progress,

it became apparent that there would be interference between these two

programs. Many of the cells may require overnight operation, and certain

-

’

L)
'
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specific resistance/Tafel scans are best monitored by the operators. In
addition, some down-time would be required in the revision of the circuitry
for both operations.

A schematic diagram of the approach now formulated for this work

E,

0

is given in Figure VII, page 63. The symbols Ej, etc. refer to the

various automatic recorder functions listed in Table III, page 64. An additional
color-coded strip chart recorder will be used for this application. The ten-
inch strip chart will be divided into two halves by appropriate bias, and the
zero to five volts d.c. scales will be displayed to the right allowing a similar
span for mo toring half cells which fail while the remaining half-cell data is
collected. &4.c. voltages, pressure, and cell current will be displayed
starting at the extreme left minimizing intermingling of the 16 curves to
be traced. Yo
Concerning the cell discharge load current wave form, two frequencies
are of basic importance. First is the basic on-off repetition rate. Itis o
planned to use a value in the order of thirty seconds, i.e., fifteen seconds on R N
fifteen seconds off. Each of the four cell terminal combinations will be o
scanned at the end of a load-on half-cycle and at the end of a load-off half-
The load pattern will therefore

cycle. be orthogonal; and each reading e

will have a comparable history. The average load current over the entire
on-off cycle will be one half of the value for the fifty percent on-period.
The load-on period will also be interrupted, but at a higher repetition rate S
n to retain polarization loss during the short, but repetitive off-periods of o
the basic load-on period.
short duration compared to the load-on sub-period.
The current-regulator system will be of relatively high impedance '
so as to hold the load current pulses relatively square and at a fixed peak i
’ and average value. The schematic Figure VIII on page 65 shows the general
approach which will be used in constructing the current regulator system.
This schematic is annotated with wave forms.

The operation of the system ':‘_

: will be more apparent from a study of the circuit. The sixty cycle sine ; o

’
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The load-off sub-periods will be of relatively Aoy
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input of the line power will be stabilized and converted to a fairly sharp

square wave by the saturable reactor type voltage regulation transformer.

The pentode control tubes will rectify and limit the cell current to the
desired setting. The short, but definite, off sub-periods of the on-cycle
result from the full wave rectifications of the square wave voltage applied
to the plates. It is anticipated that this short off-period will substantially
discriminate between electromotive cell resistance and polarization
effects.

Most of the major components of this system including the twenty-
six point external scanning switch and color-coded electronic strip chart

are now in stock at Montgomeryville.
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FIGURE YO

SCHEMATIC DIAGRAM OF MULTIPLE RECORDING
SYSTEM TO FACILITATE 1/2 CELL STUDIES IN VARIOUS

MEDIA

CELL LOAD
DEVICE

ELECTROLYTE
ANODE/ MEMBRANES /CATHODE

B B Eeet

ANODE CATHODE
REFERENCE REFERENCE

4

—— ————

~— Eg Eg E; 1+ ELEg Eg M Eg B ™7
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| 3 "ﬁl“ Research Cell Recorder Functions o
o
| S 2 ~
! Scanner R 2 . a , Signal o
C Position S 5 g °ed o3 ‘% g Source
g 0 g o) L O Q O o ™
MO — N A R n E N
! N
! 1 1 + 3 R d.c. Cell |
.. | 2 2 1 R d.c. Cell S
C 3 3 + 0 R a.c. Cell R
B ‘ 4 4 0 P a.c. Pressure Cy
| 5 5 + 1 G d.c. Anode -
) ' 6 6 1 G d.c. Anode oo
R ; 7 7 + 0 G a.c. Anode IR
8 8 0 R a.c. Pressure K
! 9 9 + 1 P d.c. Cathode i
‘ 10 10 1 P d.c. Cathode g
11 11 + 0 P a.c. Cathode
oo 12 12 Reserved /
| 13 1 + 1 G d.c Cell
\ 14 2 3 G d.c Cell
' 15 3 + 0 G a.c Cell ,
| 16 13 Reserved’
v 17 14 + 3 R d.c Electrolyte ‘ '
. 18 15 3 R d.c Electrolyte .
‘ 19 16 + 0 R a.c. Electrolyte '
20 17 Reserved
21 18 + 0 G a.c Current
: 22 19 Reserved ‘
o 23 20 + 0 P a.c Current
w 24 21 Reserved i
o 25 22 + Reserved !
\; 26 23 Reserved
[ | ‘I ’
. (a) R =red, G= green, P = purple
' ,
A}
i o , X ‘ .
| ‘ | Co » ‘ , ‘I y ,”\ ' i N
¥ , X i , g .
i " N ' . c ! ‘ A - ' j . t . l ) )
' ' ' ‘ ‘ . "
0 ! ‘ '
. ‘ ). ‘ b Wt i
' i ; J
' ‘ " ' : . | )
s ,‘f,, el e l L b e T e e e e
. b T T Y T - e W SR PR, . . .‘ [ ,,AW ; :"ﬂ"?‘h“-lﬂ.*l_lﬂtili?ﬂmlm -
' : oy E ' ! < o Vo y




FIGURE VIO

300NV 1130 04

i

}

300HLVYO T30 OL

a3.Lvino3ay ‘A 0Gl +

catlf)—

ANIWAND T30 40

¥43QyO093Y Ol TVNOIS
D e

»f

30010 ¥3N3Z

|

a3iviINO3Y ASL—

JL

HINHOASNVYL

NOILYINO3Y 39VLTIO0A
¥O1OV3Y 3IAVHNILYS

S$10VLNOD isnrav
FT0AD AN3WAND
avoi o1 17130
il

‘A Sl

OILVNIHOS H3ddOHO ANV HOLVINO3Y LN3IY¥HND AVOT

SN




gl

vt

A

-66 -

PART VI
MATERIAL TESTING

The chemical stability and corrosion resistance of ion exchange
membranes, separator materialg and materials of construction (alloys,
metals, polymers, resins, paper, and fibers) were determined in non-
aqueous solvents and in selected environments which were composed of

solvent, salt, and ligand. The selected environment represents the media

v

in which these materials must exist during operation and storage. The
severity of corrosion effects and decrease in chemical stability with time
may be attributed to the synergistic action of the ligand (SOZ’ NH3, etc.)
and the anion (Cl-, F, Br , etc.) resulting from the dissociation of the
salt.

The performance of the specimens were determined by periodic
inspection. Evaluation of the alloys and metals were based on the pitting,
blistering, cracking, discoloration, crazing, and other changes in appear-
ance that resulted from corrosion of the specimens. Objective evaluations
of the ion exchange membranes and separator materials were based on
change in appearance, dulling, swelling, discoloration, dissolution, and
degrees of deterioration.

The Nylon and Teflon conductivity cells have apparently withstood
the combined effects of various solvents, solutes, and three types of atmos-
pheres gir, SO2 and NH3) without general damage. As the work proceeds
towards construction of batteries other practical materials of construction
will require evaluation under these combined deteriorating conditions.

The conditions generated within the pressure chambers for the

automatic recording of electrolyte specific resistance and Tafel data will
combine the factors which may decompose or corrode materials of con-~
struction; thus, pressure chambers can conveniently include samples for

exposure.

-

In order to accomplish this, the new polypropylene cell holders have
been employed as containers for materials testing by charging them with

various solvent/solute combinations, after which samples of numerous
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materials of construction, ion exchange membranes. and separators have

been placed in the cells. The charged cells were then placed in the stain-

less steel chambers, and gas pressure was applied and maintained for
X * the duration of the tests. See Tables IV and V, pages 68 and 70.
' At the conclusion of the test period. the pressure was reieased

: and the samples were removed from the cells and examined for physical

and chemical changes caused by the exposures. ‘ o RO
Secondary results from the conductivity tests show that in cell
- tests involving NH; at pressures from zero to one hundred and twenty

psi. the tin-plated copper wire would eventually corrode to such a great

extent as to become powdered. The same was true for the solder connections

N which are sixtv percent tin, forty percent lead. Apparently, ammonia will f‘ T

attack both tin and copper. and to such a degree as to powder both wires and

solder containing these elements. The platinum wire was not affected.

In the cell tests. using sulfur dioxide at pressures from zero to
A forty psi, the poiypropyiene cells swelled and became discoiored. When
b they were cleaned and dried in a vacuum oven after use. both of these

effects disappeared.

As for the tin-plated copper wire. it was attacked by sulfur dioxide
as it was by .ammonia with much the same effects. Tin/lead solder was not

‘ employed, but instead nickel-plated copper clips were used. After one

test run, the nickel plating was completely gone. and the attack on the

’ copper had already started. The platinum and the silver wires apparently : 1“. N

were unaffected. ' z

r ‘. Table No. IV is a summary of the results obtained from exposure
| of materials to solvents alone. Table V shows the combined effects of ; e
propylene carbonate soiutions 1n the presence of SO, at 32 psig. e § “

B
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TABLE NO, 7

CODE: Compatibility of Materials in Various Solvents
IE = Ion Exchanger ""C': Compatible "I'' = Incompatible "Q'" = Questionabi.
S = Separator ; —
n = Nylon
a = Dynel = o 2 °
I = Cellulose ﬁ 5§ & v Q = S
i = Impregnated zZ £ £ N g o e T e
papef 4 OFE 2 = = f v B g3
pp = polypropylene : Z % = i ¢ < = A g 2
v = Viscose O % & § & & 8 = I 2§
n = o. bt ) « b
¢ = Cotton g 09 & & & 0§ 5 E 5 3
- T T T a,
DAYS UNDER TEST: 5 5 4 6 5 4 4 4 4 4
SB 6407 IE n c C ¢C ¢C c
WA 6402 IE n cC C cCc cC
WB 6403 IE n I cC C C cC
SA 6404 IE n c € Cc ¢ ¢ ¢ c¢c 1 C
WA 6406 IE v cC C ¢C cC
XLMC 3235 IE - I I C 1 C
XLMA 3236 IE - I I CcC 1 C
ET 20 IE - 1 c € ¢Cc cC C
AE 30 IE - I cC C ¢C ¢ C
DE 20 IE - C C C C cC C
P 20 IE - I c C€C ¢C ¢ C
CM 50 IE - I cC C C cC C
Whatman 42 S 1 c ¢ ¢ ¢ c ¢ ¢ ¢ c¢ C
M 1401 S a I cC C€C ¢Cc cCc 1 C C 1 C
EM 312 S n I C C € cC 1 C C Q C
M 1216 S v C C C 1
M 1231 S v C 1 c € ¢ ¢ ¢c¢c ¢ c C
EM 478 S v c € ¢ c 1
M 1365 S ¢ I C C 1 C C C Q C
EM 476 S pp c € Cc ¢ Cc ¢ ¢ cC C
R 2205 S 1 c € Cc ¢ ¢ ¢ ¢ c C
Polyethylene S - c € C Cc ¢ ¢ ¢ c C
Ultipor 9 S i I I CcC C 1
Epocel 10 S i c € ¢ c c
IPC 1478 S i C C€C C cC c
EM 470 S a I
M 1410 S a I
M 1450 S a I
M 1406 S n C
2 3
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In reference to Table IV, the materials that did not fail in any of

the solvents in which they were tested are: The Gelman ion-exchange
membranes SB 6407, WA 6402, WA 6406; Whatman #42 filter paﬁer;
polypropylene (EM 476); R-2205 (Cellulose); polyethylene; Epocel 10;
IPC 1478; the Whatman ion-exchange membrane DE 20; and M 1406
(Nylon).

Those which failed in one solvent only are: Gelman ion-
exchangers WB 6403 and SA 6404; M 1216 (viscose); M 1231 (viscose);
EM 478 (viscose); the Whatman ion-exchangers ET 20, AE 30, P 20
and CM 50; and the dynel fabrics EM 470, M 1410, and M 1450.

The solvents which did not exhibit destructive action on any of
the materials tested are: Freon 11, Freon 113, triallylamine and
petroleum ether.

In liquid ammonia, all of the dynel fabrics shrank from 1/2" x
1-1/8" to 1/8'" x 3/8".

Viscose and paper held up well. However, the ion exchange
material in WB 6403 was partially removed from the Nylon and

Ultipor 9 seemed to have suffered from decomposition.




TABLE V

MATERIALS COMPATIBILITY TEST RESULTS
PROPYLENE CARBONATE, SO,, AND VARIOUS SOLWTES

Sulfur Dioxide Atmosphere 32 P.S.1.G. and Room Temperature

-

aw

Solute None None AlClz LiCl LiF KBr
Days Under Test 2 5 5 5 5 5
Material
SA 6404 1IE - Q I I Q Q
vy MC 3142 IE - Q Q Q Q Q
3 MA 3148 IE - Q Q 0 Q Q
‘ XLMC 3235 IE - Q Q Q Q Q
- XLMA 3236 1E - Q Q Q Q Q
ET 20 Anion IE - Q C C Q Q
AE 30 Anion IE - Q Q - - -
DE 20 Anion IE - Q Q - - -
P 20 Cation IE - Q C C Q Q
CM 50 Cation IE - Q Q - - -
Whatman 42 S C - C C C C
i M 1216 S C - C C C C
o M 1231 S C - C C C C
t EM 478 S C - - - - -
Yo M 1365 S C - C C
x:“’" EM 476 S C - - - - -
o, Pol ﬁlé%-e
o Cell M - C C C C C
C R 2205 S C - C C C C
- Polyethylene SM C - C C C C
s Ultipor 9 S C - - - - -
ﬁ:’l};u' Epocel 10 S C - - - - -
R IPC 1478 S C - - - - -
.8;';'5.» Nalco D 30 S - I I I I I
e Aluminum M - ® C C C C
et Stainlegs | M . C - - - -
Code: ''C'" = Compatible, "I'" = Incompatible, "Q" = Questionable, "IE'" = Ion
Exchange Membrane, '"'S'" = Separator Material, ""M'" = Material of Construction.

The use of '"Q" to describe the results of most of the tests on ion
exchange membranes indicates that the membranes appeared to be unaffected.
However, the effects, if any, on the ion exchange resin cannot be determined
with certainty by inspection. The efficiency of the resins as ion exchangers
may be determined best by testing them in battery cells.

Most of the ion exchange membranes listed in Table Vsappeared
to withstand the exposures very well. All of the separators and materials of
construction which were checked in this series of tests were found to be
satisfactory, except that Nalco D-30 was dissolved by propylene carbonate.

-70-
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PART VII

WORK TO BE PERFORMED DURING THE NEXT PERIOD B

I. During the Next Quarter

The production of specific resistance/Tafel data will continue,
and the number of simultaneously recorded cells will be increased to
nine channels. Greater theoretical consideration will be given to the
compatibility of the solvent-atmosphere combinations selected for test.
This will be based in part upon results obtained.

The research cell recording equipment outlined in this report
will be constructed early in the next quarter, and a fund of data is an-
ticipated by the end of the quarter.

The theoretical aspect of electrode potentials in solvent-solute-
atmospheres will be considered from the standpoint of generalization.

The next phase of the material testing program will consider the
effect of swelling of the ion exchange membranes on capacity, electro-
chemical properties, and sorption equilibria in non-aqueous solvent-salt-
ligand media. JIon-exchange and sorption equilibrium depend strongly
on the nature of the solvent. The most important factors which will
determine the equilibria and selectivities are dissociation and solvation
in these solvents and specific interactions such as a complex formation.
A change of solvent may result in striking changes in selectivity, particu-
larly if specific interactions are involved.

The task of building batteries, which will utilize Livingston hard-
ware, has been assigned to a newly organized group under the guidance
of an experienced junior engineer. The technicians for the group were
drawn from teams producing batteries and hardware of the types involved.
An additional area adjacent to the initial facility has been assigned for test-

ing and producing these non-aqueous batteries.
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I1. During the Next Month

. Construction of the nine-channel secondary scanning system for
the specific resistance/Tafel data will be actively pursued. A few minor
circuit modifications will be introduced to extend the range of the data,
simplify calculations, and to help explain anomalies arising in certain

combinations.

Improved methods of handling the thousards of raw data points
into R, C, and D values will be studied. The data included in this
report was obtained by selecting approximately one scanning cycle out

of ten recorded on the charts.

Now that the solvent theory and scanning are underway, greater
effort will be directed towards research cells and practical cells i1n
existing Livingston Ammonia Battery vehicles. Additional personnel

will be assigned to augment those presently engaged in this work.
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PLATE I

Lithium Bronze Anode Vehicle
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APPENDIX I

Deliberation on the high equivalent weight and low voltage of
aqueous batteries leads to the realization that a limiting approximate
relationship exists between oxidation potential and equivalent weight.

In Table I of this Appendix some examples of conventional or desirable
anode reactants are listed with their equivalent weights and acid aqueous
electrode potentials. Figure Il is a semi log plot of this data with the
equivalent along the log axis. Note that lithium represents a limiting
case for the alkali metal family, and the points for K and Na are re-
jected in this derivation. Mg represents the limiting case for the
élkaline earths. A line is drawn through the remaining points of Figure
I representing mathematically the approximate anode equivalent weight
as a function of anode potential.

Cathode reactants were similarly treated, and the two lines
combined. The equation M = e(S - HX) was abstracted from the plots
where M is equivalent weight, X is the electrode potential, ‘and S and
H are characterizing constants.

The correct values for S and H were found to be approximately
5.5 and 0.4 respectively.

More comprehensive plotting and numerical regression of the
line to the points would be expected to provide additional significant

figures, but the above appear adequate for selection and screening of

solvents.

NOTE: Appreciation is expressed to Mr. William A. Robertson of
NASA for early detection and correction of an error made in
the reasoning used to abstract the one equation from the two

plots.
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TABLE 1
OF APPENDIX I

Elements Equivalent Acid Aqueous
Weight Oxidatiog Potential "
E~ (Volts)
Li 7 +3.0 |
Na 23 +2.7 !
K 39 +2.9
Mg 12 +2.4
Ca 20 +2.9
Al 9 +1.7 !
Be 4.5 +1.85
Zn 33 +0.8 . .
Cd 56 +0.4 .
Pb 104 +0.1
!
[
|
' i u f
‘ ; ( |
\ A '
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AQUEOUS OXIDATION POTENTIALS ve. STANDARD HYDROGEN ELECTRCDE
FPENDIX Y - FIGURE Y
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APPENDIX II
This appendix illustrates one path whereby the Tafel equation %,
? =a+blogi (1)
may be modified to generalize the corrosion current of batteries which
may be constructed using a wide variety of solvents. The terms of
this equation (1) normally are restricted to one electrode and do not
include the initial reaction standard potential nor the effects of concen-
trations upon reaction potential:
? = overvoltage (volts)
a = the Tafel constant (volts)
b = the Tafel slope (volts)
Battery local action may be characterized by a single equation of the
same form when the terms are conveniently chosen. This equation
may then be rearranged to yield a theoretical value for battery local
action current density as an explicit function of battery potential in terms
of conveniently measured parameters of the solvent-atmosphere combination:
7= e(X-C)/D (2)
Starting with a generalized solvent autoionization reaction (3)
applicable to most solvents:
AB=A"+B" (3)
The voltages required to decompose the solvent AB by the physical model
of Figure III on page 20 using a neutral solute of high decompoesition
potential is given by equations (4) and (5)%>. Equation (4) treats battery

anode local action and (5) battery cathode local action.

+
E, = E; ;;, In [[;':‘B} +m (4)
e = Ei+ ;ItF In }EB]] NG | )
Subtracting E, from E, gives the cell potential!, X: .
X=E -E,; (6)
Substituting the values for E, and E, in gb) gives:
X = E{ - ES -;; In [?Ag? ] +.?,+xzz (7)

Since the first three terms are constants they are combined into the

single contant, c: ’ 3
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X=c+t rt‘l + l'zz
Expanding x%l and rtz by the Tafel equation and regrouping gives:
X=c+(aj+a,) +(by+b,)InJ
Combining the constants of (9) gives:
X=C+DInJ
Solving equation (10) for J, the corrosion current density,gives
equation (2):
(X-C)/D
J=e

The parameters C and D may be conveniently evaluated in the majority

of cases from a simple voltage (.X)-current density (J) or modified

Tafel plot.

"Electrochemistry,' Edmund C. Potter, Cleaver-Hume Press Ltd.,
London, Page 128 (1956).

"Interpreting Liquid Ammonia Chemistry with Thermodynamics, "
William L. Jolly, J. Chem. Ed., 33, 10, Page 513, (1956).

"Standard Electrode Potential and Decomposition Voltage of Solutions in
Liquid Ammonia, ' V. Pleskov, Acta Phys Chim 2_0, Page 583, (1945)

*'E C. Potter, ibid., Page 152.

a

(10)

(2)



[aT] =
(B7]=
[a*][B-]/[AB]

(O G

1

a; & a3

by & by =

*See Page 11.
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Definition _o_f Terms

The potential of the anode in a battery and consequently
the driving force behind local action or decomposition of
the solvent at this electrode.

The potential of the cathode in a battery and the driving
force of cathode local action.

E; + E; or the cell potential.

The corrosion current density to distinguish this from

the previously assigned I, stoichiometric current.*

The universal gas constant chosen to distinguish this
from the previously assigned R, electrolyte specific
resistance. ¥

Absolute temperature chosen to distinguish this from the
previously assigned T, discharge time. *

Faraday's constant.

1, the hypothetical one molar standard state. An example
is cited in footnote 4, page 90.

The activity of the cationic autoionization product.

The activity of the anionic autoionization constant.
Autoionization equilibrium constant.

Overvoltage, (1) anodic, (2) cathodic, local action driving

force-natural log base.

R -
ES - Ep - It 1, ATIB7] 1B

NF [AB]
Tafel constants in the original connotation - natural log base.
Tafel slopes in the original connotation - natural log base.
c + (a1 + az), Modified Tafel constant.
(b1 + bz), Modified Tafel slope.

Base of natural logarithms.
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APPENDIX III

Abstract No. 39 taken from Extended Abstracts,
Electrochemical Society, Fall Meeting, September, 1962

AN APPLICATION OF THERMODYNAMIC METHODS TO THE
DETERMINATION OF REACTIONS AND VOLTAGES IN LIQUID
AMMONIA ELECTROMOTIVE CELLS

by

William F. Meyers
G. & W. H. Corson, Inc.
Plymouth Meeting
Pennsylvania

A semi-empirical method for estimating the potentials of reactions
in liquid ammonia electromotive cells is proposed. This method is applied
to ten magnesium/heavy metal sulfate couples resulting in a correlation to
within 0. 06 volts average deviation, based on observed data.

The method is briefly illustrated for the Mg/NH4SCN in NH3 (1)/Pb

SO4 cell. Reaction (A) was chosen as characteristic for this type of cell.
(A) Mg°42NHY + PbSO4(Am) —— - =

Pb° + Mg'* 4 (NH,), SO, (Am)
Publications of Latimer and Jolly provide tabulations covering standard
free energies of all factors excepting the ammoniation, (Am), term for
reaction A as well as very numerous other reactions which might be
predicated.

Jolly has improved his first method for estimating thermodynamic
functions of species in liquid ammonia, after Bjerrum, by accounting for
the difference in coordination energy:

(1) AFf NH; © AF§ H,0 +162Z +.4F;
Where JF? is the standard free energy of formation of a species in

liquid ammonia, AF°H is the standard free energy of formation of a
sp_ecies in water, Zflsztge signed charge of the species, and[]F,‘t> represents
the difference in affinity of the species for the two ligands NHj3 and H,O.

The order of procedure is herein reversed and equation (1) is used
to evaluate AFE from the wealth of conveniently tabulated free energy data
for unsolvated, aqueous, and ammonia species. To completea free energy
balance over reaction (A) the numerical values for PbTt are substituted into
equation (1) giving (2).

(2) AF{ (Pb**)= 13 - (-5.8) -16 (+2) = -13. 2 kcal/mol
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The aqueous species was used as the starting point to allow for the relative
nature of the AF{ term and this also accounted for solvent required on the
opposite side of the equation since only the affinity of the species for the
ligand remains in the calculations. Equilibrium between the solid, and

the saturated solution allows the evaluation of AF? NH3 from soluble
species in water. Only the cation was considered solvated.

Having evaluated AFY{ (Pb++), this term was added to the standard
free energy for crystalline PbSO4 to account for the (Am) term of reaction
(A). Ammonium sulfate (Am) was similarly treated leading to the free
energy balance, equation (3), based upon reaction (A).
(3) AFr + 2(-2.7) + (-193.9 - 13.2) =
=0 - 80.4 + (-215-0)
AFr = -82.9 kcal
Since two N, faradays per mol of lead sulfate are approached in practice,
the potential of the Mg/NH4SCN in NHj3 (1)/PbSO4 cell may be estimated: o
(4) E = - AFr/NF
- (-82.9) /2 x 23.06
1.80 Volts
This compares rather well to our observed value of 1.82 £+ 0. 03 volts. ,

i

I

Among ten initial comparisons, the cell Zn/NH4SCN/PbSO4 was
noticeably irregular, to the extent of 0. 22 volts from the observed value.
However, the reaction chosen, (B), allows the existence of three solid
phases.

(B) Zn + 2 NHJ + 2SCN™ + PbSO4(Am) ---3

Zn (SCN), (Am) + (NH,),SO, (Am) + Pb°
Compensation for this solid anode reaction product, Zn(SCN)Z(Am),
reduces the difference between estimated and observed cell voltages to
within 0. 02 volts.

In Table I, three different cell types are listed. For entry
number 1, the simplest reactiongave reasonable correlation. For
entry number 2, it was necessary to take into account the unionized
nature of Pb** in solution in ammonia. The use of conductivity ratio
for activity ratio appears reasonable and gave good correlation.
Entry 3 provided the opportunity for solubility correction in the
cathode region and comparison to observed values.

Table I
Ammonia Electromotive Cell Voltage
Observed Calculated S, N '
1. Mg/KSCN/AgCl 2.3 2.26 !
2. Pb/NH4SCN/PbO, 1.1 1.12 S
3. Mg/NH4SCN/MnO, 2.58 2.55
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An inquiry into the observed performance of the sulfur cathode

in ammonia led to the following stepwise reactions using a magnesium
anode.

(C) Mg + 55 ——> Mg @+ s
2.12 Volts and 0.4 faraday/mol S
(D) Mg + 45, —> Mgt T + 58,
1.88 Volts and 0.5 faraday/mol S (cumulative)
(E)

3Mg + Mg ' +S; —> 4MgS (Am)

1.81 Volts and 2.0 faraday/mel S (cumulative)

In four different supporting electrolytes reaction (C} is well defined by a
potential plateau ranging from 2.12 to 2.18 volts.

The potential indicated
for reaction (D), being relatively short, is observed as a transition as in

aqueous polysulfide potentials. The third plateau is distinctly present in
the observed data without supporting electrolyte but approaches the full

theoretical capacity in a simple manner only in the acid supporting
electrolyte.

The presence of more complex polysulfides is indicated
from 0.5 to 2.0 faradays per mol of sulfur with Kt and Mg++ supporting
electrolytes where the work of Watt and Otto is referenced.
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LIVINGSTON ELECTRONIC CORPORATION
Montgomeryville Laboratory

Montgomeryville, Pennsylvania

MANHOURS, COST AND COMMITMENT REPORT FOR PERIOD 8/20/63 to 11/17/63

CONTRACT NO. NAS 13-2775

A, Man Hours Expended

Chief Project Engineer 306.0
Project Engineer 93,0
Design Engineer 640.0
Physicist 251,0
Chemist and X-Ray Analyst Ly,.s
Junior Engineer 1101,.0
Technician 1672.0
Machinist 95.5

Total Hours Expended 4203.0

B. Dollar Expenditures

Engineering Labor - 4203.0 hours (A Above) $12,578.16
Engineering Burden at Rate of 50% 6,289,09
$18,867.25
Direct Materials 1,020.92
Direct Sub Contracts 106.95
G & A Expenses at Rate of 3,5% 699.83
Total Dollars Expended $20,694.95
Ce Estimated Comhitments
Raw Material $ 179.40
Sub Contracts NONE
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